Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials

نویسندگان

  • Trapti Neer
  • Purshottam Narain Agrawal
چکیده

In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on some positive linear operators associated with the Hermite polynomials

In this paper we give direct approximation theorems and the Voronovskaya type asymptotic formula for certain linear operators associated with the Hermite polynomials. These operators extend the well-known Szász-

متن کامل

Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type

The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with...

متن کامل

Voronovskaya Type Asymptotic Formula for Lupaş-durrmeyer Operators

In the present paper, we study some direct results in simultaneous approximation for linear combinations of Lupa¸s-Beta type operators.

متن کامل

Modified double Szász - Mirakjan operators preserving x

In this paper, we introduce a modification of the Szász-Mirakjan type operators of two variables which preserve f0 (x, y) = 1 and f3 (x, y) = x 2 + y. We prove that this type of operators enables a better error estimation on the interval [0,∞) × [0,∞) than the classical Szász-Mirakjan type operators of two variables. Moreover, we prove a Voronovskaya-type theorem and some differential propertie...

متن کامل

On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}(p,q)-Szász-Mirakyan operators and their approximation properties

In the present paper, we introduce a new modification of Szász-Mirakyan operators based on [Formula: see text]-integers and investigate their approximation properties. We obtain weighted approximation and Voronovskaya-type theorem for new operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017